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Summary. The approach of molecular potentials describing the shape of transition curves of spin

crossover in the solid state developed earlier has been extended to many-body interactions character-

ized by the Axilrod-Teller potential. An improved procedure for the minimization of energy developed

for this case is presented. Calculations for systems involving Lennard-Jones, electric dipole–dipole,

and dispersive Axilrod-Teller triple interactions yield non-zero asymmetries of splittings in expanded=

compressed systems alone. The excess energy is unaffected by the Axilrod-Teller potential. Triple inter-

actions of the Axilrod-Teller type thus increase the sensitivity of a transition curve towards compression.

Another approach presented employs the deviations of molecules from positions of mechanical

equilibrium set up by the known binary potential. In the approximation of small perturbations these

deviations are proportional to the gradients of many-center potentials. This allows one to parametri-

cally define non-ideality parameters as functions of gradients of triple potentials of unknown types.

Employing regularization bounds an adequate parameterization of experimental transition curve of

spin crossover has been achieved in terms of parameters of Lennard-Jones potential and relative

deviations of molecules from the position of mechanical equilibrium.

Keywords. Solid state; Thermodynamics; Spin crossover; Molecular interactions; Many-body

interactions.

Introduction

Many-body interactions significantly contribute towards the free energy of con-
densed systems [1–4]. In our previous publications [5–9] we have developed a
theoretical model of a simple chemical equilibrium in the solid state:

A Ð B ð1Þ
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This formalism takes into account both binary and triple interactions character-
ized by formal non-ideality parameters, viz. the excess energy (�Eex) and asym-
metries of splittings (�A, �B) of energy levels of participating molecules.
These parameters have been derived from energies of molecules A and B in
all possible surroundings along one coordinate, i.e. in configurations AAA,
AAB, BAB, BBB, ABB, and ABA. In this formalism the excess energy is a
microscopic parameter equal the sum of the main splittings of energy levels:
�Eex ¼ EBAB � EAAA þ EABA � EBBB. The asymmetries reflect the difference
in effects of the first and second substitutions in molecular surroundings:
�A ¼ FAAB � FAAA þ FAAB � FBAB, �B ¼ FBBA � FBBB þ FBBA � FABA. When
binary interactions are only taken into account the asymmetries are zero whereas
the excess energy equals the formal excess energy of the theory of regular
solutions.

The developed formalism provided for adequate parameterization of all known
types of the spin crossover equilibrium between low-spin (A, LS) and high-spin
(B, HS) isomers, viz. gradual, abrupt and two-step spin crossover (Fig. 1). Gradual
transitions correspond to linear van’t Hoff plots and can be described in a pseudo-
ideal approximation. Abrupt spin crossover originates from strong homo-molecular
interactions characterized by large positive excess energies and leading to the
separation of HS-rich and LS-rich phases. The two-step spin crossover originates
from strong hetero-molecular (HS–LS) interactions leading to the formation of
ordered structures. It has been shown [5, 8] that many-body interactions play a
considerable role in spin crossover: the two-step spin crossover may be caused by
large negative excess energies as well as by large positive asymmetries of splittings
or combination of these parameters.

In Ref. [9] we have expressed non-ideality parameters in terms of binary
molecular potentials. Binary interactions mainly contribute towards the excess
energy whereas the asymmetries of splittings arise from either selective binary
interactions or many-body interactions.

Triple interactions considered as perturbations of binary interactions can be
taken into account as yielding a separate contribution towards the total energy:

E ¼
X
ij

’ij þ
X
ijk

 ijk ð2Þ

Fig. 1. Three basic types of spin crossover: abrupt transition in [Fe(phen)2(NCS)2] (A, data from

Ref. [10]), gradual transition in [Fe(2-pic)3]Cl2CH3OH (B, data from Ref. [11]), and two-step spin

crossover in [Fe(2-pic)3]Cl2CH3CH2OH (C, data from Ref. [12]); xHS is the mol fraction of HS species
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In a system of molecules interacting via dispersive forces a third molecule changes
the instantaneous electric moments of two other molecules. Corresponding poten-
tial is known under the name of the Axilrod-Teller triplet potential [13]:

 123 ¼ 3

4
h�

�1�2�3

r3
12r

3
13r

3
23

3 cos �12 cos �13 cos �23 þ 1ð Þ ð3Þ

in which �i are polarizabilities, rij are intermolecular distances, �ij are angles
opposite to rij (Fig. 2), and � is the mean electronic frequency:

� ¼ 3�1�2�3

�1�2 þ �1�3 þ �2�3

ð4Þ

Parameters of the Axilrod-Teller potential can be expressed via parameters of the
Lennard-Jones potential. The constant B in the attractive part of the Lennard-Jones
potential (’ij ¼ �Bij=rij

6) is proportional to the square of polarisability [14]:

B ¼ 0:68 h��2
ffiffiffiffi
m

p
ð4aÞ

in which m is the number of electrons involved in the dispersion process. The
product of polarizabilities in Eq. (3) can be combined with (3=4)h�, which yields
1.103�iBjk=

ffiffiffiffi
m

p
:

 123 ¼ 1:103ffiffiffiffi
m

p �1

r3
13

B23

r3
12r

3
23

f ð�Þ ð5Þ

Three-center potential thus equals approximately �1r
�3
13 m

�1=2f ð�Þ multiplied by
the attractive part of the Lennard-Jones potential. The constant Bij of the Lennard-
Jones potential can be expressed in terms of coordinates of the point of mechanical
equilibrium ("ij and aij ¼ �ij�21=6):

Bij ¼ 4"ij�
6
ij ð6Þ

Therefore:

 123 � "23

4f ð�Þffiffiffiffi
m

p �1�
6
23

r3
13r

3
12r

3
23

ð6aÞ

The polarizability �i approximately equals the molecular volume [15]:

� � 0:7v ¼
0:7�a3

ij

6
¼

0:7
ffiffiffi
2

p
��3

ij

6
¼ 0:51�3 ð7Þ

Fig. 2. Geometric parameters employed in the calculation of the Axilrod-Teller potential
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Hence:

 123 � "23

2f ð�Þffiffiffiffi
m

p �3
11�

6
23

r3
13r

3
12r

3
23

ð8Þ

For linear chains of three molecules employed in the model [5–9] (AAA, AAB,
etc.) the geometric factor f(�)¼ � 2, hence:

 123 � � 4ð"12"23"13Þ
1
3ffiffiffiffi

m
p �12�23�13

r13r12r23

� �3

ð9Þ

Writing this expression via the van der Waals diameters one obtains:

 123 � � 2ð"12"23"13Þ
1
3ffiffiffiffiffiffi

2m
p a12a23a13

r13r12r23

� �3

ð10Þ

The effective number of electrons taking part in dispersive interactions (m) for
spin crossover molecules apparently lies between 1 and 10. A general form of such
a three-center potential thus is:

 123 � ��123ð"12"23"13Þ
1
3

a12a23a13

r13r12r23

� �3

ð11Þ

in which �123¼ 0.44 for m¼ 10 and �123¼ 1.39 for m¼ 1.
In the present paper we shall explore possible effects of many-body interactions

on equilibria in the solid state employing two methods: (i) introducing the Axilrod-
Teller potential and (ii) characterizing many-body interactions by their effects on
intermolecular distances.

Results and Discussions

A Model System Involving Lennard-Jones, Axilrod-Teller
and Electric Dipole–Dipole Interactions

Minimization of energy. The excess energy and asymmetries of splittings have
been obtained as [9]:

�A ¼ 3ð2 AAB �  BAB �  AAAÞ ð12Þ

�B ¼ 3ð2 ABB �  ABA �  BBBÞ ð12aÞ

�Eex ¼ 3ð4’AB � 2’AA � 2’BB þ  ABA �  BBB þ  BAB �  AAAÞ ð12bÞ

In order to compute these parameters the van der Waals diameters and molecular
distances must be optimized for the minimum of energy. This does not present any
serious problem for systems with purely binary interactions (see Ref. [9]), however
taking into account triple interactions makes this procedure more complicated.

Consider a system involving Lennard-Jones, Axilrod-Teller, and electric
dipole–dipole interactions. The potential energy of such a system can be written as:

’123 ¼ ’bin þ  123 ð13Þ
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in which  123 is given by Eq. (11) and ’bin ¼ ’12
0 þ ’23

0 can be written as:

’bin ¼ "12

a12

r12

� �12

�2
a12

r12

� �6

� �1�2

"12a
3
12

a12

r12

� �3
" #

þ "23

a23

r23

� �12

�2
a23

r23

� �6

� �2�3

"23a
3
23

a23

r23

� �3
" #

ð14Þ

Conditions of the mechanical equilibrium can be written as:

d’123 ¼ @’

@r12

� �
r23

dr12 þ
@’

@r23

� �
rAA

dr23

¼ d’12

dr12

þ @ 123

@r12

� �
dr12 þ

d’23

dr23

þ @ 123

@r23

� �
dr23 ¼ 0 ð14aÞ

For symmetric configurations: AAA, BBB, BAB, and ABA all potentials are
functions of one variable (r12¼ r23) and conditions of Eq. (14a) can be written in a
relatively simple form:

d’AAA

drAA

¼ 2
d’AA

drAA

þ d AAA

drAA

¼�24"AA

rAA

�
aAA

rAA

�3��
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rAA

�9

�
�
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rAA

�3

� �2
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4"AAa
3
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� 3�

64
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"AA

�
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rAA

�6�
¼ 0

ð15Þ

d’BBB

drBB

¼ 2
d’BB

drBB

þ d BBB

drBB

¼ � 24"BB

rBB

aBB

rBB

� �3
aBB

rBB

� �9

� aBB

rBB

� �3
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4"BBa
3
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"BB
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rBB
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" #
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ð16Þ
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d’ABA

drAB

¼ 2
d’AB

drAB

þ d ABA

drAB

¼�24"AB

rAB

aAB

rAB

� �3
aAB

rAB

� �9

� aAB
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� �3
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3
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"AB

��3
A

aAB

rAB

� �6
" #

¼ 0

ð18Þ
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in which �A¼ aAB=aAA; �B¼ aBB=aAB. These equations are cubic equations of the
type:

y3 � py2 � y� r ¼ 0 ð19Þ
easily solvable by numeric methods. Note that, equilibrium values of rAB in BAB
and ABA are different due to different three-center potentials  ABA and  BAB.

For the asymmetric configuration AAB the condition of mechanical equili-
brium can be written in two forms convenient for calculations of either rAA or rAB:

d’

drAA

¼ d’AA

drAA

þ @ AAB

@rAA

þ d’AB

drAB

þ @ AAB

@rAB

� �
drAB

drAA

¼ 0 ð20Þ

d’

drAB

¼ d’AB

drAB

þ @ AAB

@rAB

þ d’AA

drAA

þ @ AAB

@rAA

� �
drAA

drAB

¼ 0 ð21Þ

Assuming rAA and rAB to be independent variables (drAA=drAB¼ 0,
drAB=drAA¼ 0), one obtains the conditions d’AAB

drAA
¼ 0, d’AAB

drAB
¼ 0 as:

aAA

rAA

� �9

� aAA

rAA

� �3

� �2
A

4"AAa
3
AA

� �"AAB

32"AA

aAA

rAA

� �6
�A

�A

� �6
2�A

1 þ �A

� �3
2 þ �A

1 þ �A

¼ 0

ð22Þ

aAB

rAB

� �9

� aAB

rAB

� �3

� �A�B

4"ABa
3
AB

� �"AAB

32"AB

aAB
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� �6
�A

�A

� �3
2�A

1 þ �A

� �3
2�A þ 1

1 þ �A

¼ 0

ð23Þ
in which �A¼ rAB=rAA. In general, rAA and rAB must be found as a joint solution
of this system of two equations that requires a complicated iterative procedure.
Fortunately the ratio �A¼ rAB=rAA can be considered as a quasi-constant equal to
the ratio of corresponding distances in the prototype compound (see Ref. [9]). In
such a case Eqs. (22) and (23) can be solved separately with respect to rAA and rAB.
A similar set of equations can be derived for the configuration BBA:

aBB

rBB

� �9

� aBB

rBB

� �3

� �2
B

4"BBa
3
BB

� �"BBA

32"BB

aBB

rBB

� �9
�B

�B

� �6
2

1 þ �B

� �3
2�B þ 1

1 þ �B

¼ 0

ð24Þ
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� �9

� aAB
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� �3
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4"ABa
3
AB

� �"BBA

32"AB

aAB

rAB

� �9
�B

�B

� �3
2

1 þ �B

� �3
2 þ �B

1 þ �B

¼ 0

ð25Þ
in which �B¼ rBB=rAB is considered as a quasi-constant.

The optimization procedure starts with the minimization of energy in AAA and
BBB configurations by adjusting van der Waals diameters aAA and aBB according
to Eqs. (15) and (16) at constant rAA¼ 10.739 Å, rBB¼ 10.948 Å, �B¼ 22.426 D,
and �A¼ 22.812 D (data for the prototype compound, see Ref. [9]). The parameter
aAB is calculated according to the additivity rule. The depths of Lennard-Jones
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potentials have been fixed at "AA ¼ 12 kJ=mol and "BB ¼ 14 kJ=mol. The depth of
hetero-molecular potential has been calculated according to Berthelot’s rule.
Employing these parameters the distances rAA, rAB, and rBB in configurations
AAB, BAB, BBA, and ABA are optimized for the minima of energy.

Non-ideality parameters. The combination of the Axilrod-Teller (�123¼ 0.4),
Lennard-Jones, and electric dipole–dipole potentials yields potential curves shown
in Fig. 3A. The asymmetry of splitting becomes visible at very large compressions=
expansions (ca. 3%). According to the data in Table 1 the Axilrod-Teller potential
does not practically change the excess energy (�Eex) at any compression. The
asymmetries of splittings at zero compression (r=ropt¼ 1) are negligibly small,
(see also Fig. 3B). In compressed=expanded systems the Axilrod-Teller potential
brings about considerable asymmetries �A(B) (Fig. 3B), that are positive in ex-
panded systems and negative in compressed ones.

Fig. 3. Effect of the Axilrod-Teller potential on the energy levels computed for model system

involving Axilrod-Teller, Lennard-Jones, and electric dipole–dipole potentials (A, �123¼ 0.4; curves:

1, 2, 3, 4, 5, and 6 correspond to AAA, AAB, BAB, BBB, BBA, and ABA); the right-hand graph (B)

shows dependencies of the asymmetries �A(B) on compression=expansion computed for �123¼ 0.4 (1),

0.8 (2) and 1.2 (3)

Table 1. Non-ideality parameters computed for model system involving Axilrod-Teller, Lennard-

Jones, and electric (�A¼ 22.812 D, �B¼ 22.426 D) dipole–dipole potentials

�123 r=ropt DA

kJ=mol

DB

kJ=mol

�Eex

kJ=mol

�A

kJ=mol

�B

kJ=mol

0.990 5.142 �4.058 1.084 0.000 0.000

0.000 1.000 5.122 �4.042 1.080 0.000 0.000

1.010 5.138 �4.055 1.083 0.000 0.000

0.990 4.863 �3.775 1.088 �0.357 �0.366

0.400 1.000 4.845 �3.757 1.087 0.022 0.023

1.010 4.860 �3.772 1.088 0.340 0.348

0.990 4.574 �3.482 1.093 �0.682 �0.698

0.800 1.000 4.557 �3.463 1.094 0.081 0.084

1.010 4.571 �3.478 1.092 0.720 0.737

0.990 4.274 �3.178 1.097 �0.974 �0.995

1.200 1.000 4.258 �3.157 1.101 0.179 0.184

1.010 4.271 �3.174 1.097 1.143 1.169
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At linear compression of the order �1% (volume compression �3%, required
pressure ca. 30 kbar) one can expect asymmetries of the order �A(B)��1 kJ=mol
at �123¼ 1.2. These effects can be interpreted as an increased sensitivity of the
shape of transition curve towards compression.

In the absence of triple interactions (�123¼ 0) a compression (expansion) within
r=ropt¼ 0.98–1.3 does not change the shape of transition curve (Fig. 4A, energy
and entropy of spin crossover are supposed not to be changed by compression=
expansion).

In the presence of triple interactions (�123¼ 1.2) the variation of r=ropt in the
same range brings about a conversion of the gradual spin crossover (curve 1,
Fig. 4B) into an abrupt one (curve 3, Fig. 4B). The increased sensitivity of the
shape of transition curves towards compression seems to be the only effect of triple
interactions of the Axilrod-Teller type. Negative asymmetries arising from com-
pression only decrease the slope of transition curves and do not bring about any
critical phenomena. The two-step spin crossover can be expected as a combination
of positive asymmetries (in expanded systems) with a negative background excess
energy. The overall effect of the Axilrod-Teller interactions is not significant, as
might be expected for systems with purely dispersive interactions.

Many-body Potentials Represented via their Gradients

The strength of the actual many-body interaction can be higher than that of the
purely dispersive forces. For example, many-center exchange interactions in alkali
halide crystals contribute up to several percents of the total lattice energy [1], i.e.
up to 10 kJ=mol. The actual radial dependence of the energy of triple interactions
may be complicated and in general unknown. However the energy of many-body
interactions can be calculated as an increase in the energy due to the deflection of a
molecule from the position corresponding to the minimum of the binary potential.
An unknown many-center potential is thus defined in terms of parameters of the
binary potential in which the deviation plays the role of the conversion coefficient.
It is not difficult to show that in the case of small perturbations the deflection from

Fig. 4. Increased sensitivity of the shape of spin crossover transition curve towards compression as a

result of triple interactions: transition curves in the absence of triple interactions (�123¼ 0, A)

computed for r=ropt¼ 0.98 (1), 1.00 (2), and 1.03 (3) overlay whereas the same curves computed

for �123¼ 1.2 (B) show different types of transitions
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the point of mechanical equilibrium is proportional to the gradient of the unknown
potential.

Let us consider a system involving a known binary potential ’ij and an
unknown many-body potential  :

u ¼ ’ij þ  ð26Þ
Suppose that the roots (r0

ij) of equations defining the minima of binary poten-
tials are known for all pairs:

d’ij

drij

� �
r0
ij

¼ 0 ð27Þ

If  is a small perturbation then the actual distance in a given pair can be written
as:

rij ¼ r0
ji þ 	ij ð28Þ

in which 	 is a small deflection. In this case the derivative of the total potential
du=drij can be partly linearised in the vicinity of the point r0

ji as:

du

drij
¼ d’ij

drij

� �
r0
ij

þ
�

d2’ij

dr2
ij

�
r0
ij

�
rij � r0

ij

�
þ d 

drij
ð29Þ

The condition of mechanical equilibrium involving the total potential:

du

drij

� �
r0
ij
þ	
¼
�

d2’ij

dr2
ij

�
r0
ij

	 þ d 

drij

� �
r0
ij
þ	
¼ 0 ð30Þ

yields the deflection 	 proportional to the gradient of  :

	ij ¼ � d 

drij

� �
r0
ij
þ	

��
d2’ij

dr2
ij

�
r0
ij

ð31Þ

The proportionality coefficient equals the inverse second derivative of the bina-
ry potential in the point of its minimum. The same relationship can be written as:

d 

drij

� �
r0
ij
þ	
¼ �	ij

�
d2’ij

dr2
ij

�
r0
ij

ð32Þ

which means that the gradient of the many-body potential is proportional to the
deflection of the molecule from the point of the minimum of the binary potential.

Deflections from the point of mechanical equilibrium can be conveniently
characterized in terms of relative deviations �ij: rij ¼ r0

jið1 þ �ijÞ. Equation (32)
is then transformed into:

d 

drij

� �
r0
ij
þ	
¼ ��ijr

0
ij

d2’ij

dr2
ij

 !
r0
ij

ð33Þ

For systems with Lennard-Jones and electric dipole–dipole binary interactions
one can obtain an analytical relationship between 	ij and d =drij in terms of
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parameters of these potentials. The derivative of the basic potential can be written
as:

d’ij

drij
¼ � 12"ij

rij

aij

rij

� �12

� aij

rij

� �6

� �i�j

4"ija
3
ij

aij

rij

� �3
( )

ð34Þ

Or:

d’ij

drij
¼ �12"ij

a12
ij

r13
ij

�
a6
ij

r7
ij

� �i�j

4"ija
3
ij

a3
ij

r4
ij

( )
ð35Þ

The second derivative then is:

d2’ij

dr2
ij

¼ 12"ij
r2
ij

aij

rij

� �3

13
aij

rij

� �9

�7
aij

rij

� �3

�4
�i�j

4"ija
3
ij

( )
ð36Þ

Separating the part that equals zero in the point of the minimum of potential
(rij ¼ r0

ij) one obtains:

d2’ij

dr2
ij

¼ 12"ij
r2
ij

aij

rij

� �3

9
aij

rij

� �9

�3
aij

rij

� �3

þ4
aij

rij

� �9

� aij

rij

� �3

� �i�j

4"ija
3
ij

" #( )
ð37Þ

Second derivative in the point of the minimum of this potential is thus:�
d2’ij

dr2
ij

�
r0
ij

¼ 36"ij

ðr0
ijÞ

2

�
aij

r0
ij

�6	
3

�
aij

r0
ij

�6

� 1



ð38Þ

Deflections from the point of mechanical equilibrium due to the action of the
many-body potential  are then given by:

	ij ¼ �
ðr0

ijÞ
2

36"ij

d 
drij

� �
r0
ij
þ	�

aij
r0
ij

�6	
3

�
aij
r0
ij

�6

� 1


 �ij ¼ �
r0
ij

36"ij

d 
drij

� �
r0
ij
þ	�

aij
r0
ij

�6	
3

�
aij
r0
ij

�6

� 1


 ð39Þ

On the other hand the gradient of the many-body potential can be expressed via
parameters of the binary potential as:

d 

drij

� �
r0
ij
þ	
¼ �36�ij

"ij

r0
ij

�
aij

r0
ij

�6	
3

�
aij

r0
ij

�6

� 1



ð40Þ

At a first glance Eq. (40) does not involve parameters of the electric dipole–
dipole interactions (�A, �B). In fact, information on these interactions is implicitly
contained in the ratio aij=r

0
ij, differing from that of the pure Lennard-Jones potential

aij=r
0
ij ¼ 1.

Triple interactions in configurations AAA, AAB, BAB, BBB, BBA, and ABA
can be characterised by variations of distances r12 and r23, arising from the action
of the third molecule (Fig. 5). The deviation 	ij is thus supposed to depend on the
nature of the third molecule as reflected by the upper index to be used 	ij ¼ 	ij

k, k
denoting the nature of the third molecule (similarly �ij

k ¼ 	ij
k=rij).
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From this point of view the gradient d AAB=drAB in the configuration AAB
arises from the action of the molecule A on the bond A–B and can be denoted as
GAB

A. The gradient d AAB=drAA in the same configuration can be considered as
originating from the action of the molecule B on the bond A–A; it can be denoted
as GAA

B. There are 6 such gradients and deflections that can be represented as
	AA

A ¼ rAA�AA
A, 	AB

A ¼ rAB�AB
A, 	BB

A ¼ rBB�BB
A, 	AA

B ¼ rAA�AA
B, 	AB

B ¼
rAB�AB

B, 	BB
B ¼ rBB�BB

BÞ. The problem is thus strongly overparameterized: a
given combination of �Eex, �A, and �B can be achieved by a large number of
combinations of gradients. One has to employ some regularization bounds.

It can be assumed that the action of the molecules A and B on the neighboring
bond is of equal magnitude and opposite sign: �AA

B ¼ ��AA
A, �BB

B ¼ ��BB
A (at

complete equality �ij
B ¼ �ij

A the asymmetries are always zero). The action of
molecules on hetero-molecular distances can be calculated according to the additiv-
ity rule: �AB¼ 1=2(�AAþ�BB). This leaves us two adjustable parameters �AA

A and
�BB

A. The final regularization can be based on the assumption that the reactions of
AA and BB bonds are also opposite: �AA

A ¼ ��BB
A (i.e. that the third molecule A

increases the distance in the neighboring A–A pair but shortens it in the B–B pair).
Non-ideality parameters can be calculated for such systems in the following

way. At first aij and rij are optimized for the minimum of chosen binary potentials
as described in Ref. [9]. Then intermolecular distances are varied according to the
values of �AA

A (all other coefficients being computed via regularization bounds).
This produces changes in energies of configurations that yield new non-ideality
parameters whereas the gradient GAA

A is calculated according to Eq. (40). The
dependences of �Eex, �A, and �B on the gradient GAA

A are thus parametrically
defined. The gradient GAA

A in this approximation is the only parameter of the
three-center potential.

Under these conditions one obtains non-ideality parameters as polynomial
functions of the gradient GAA

A (Table 2, Fig. 6). Negative gradient (positive
�AA

A) yields positive asymmetries coupled to negative excess energy that can
explain many cases of the two-step spin crossover. When the background excess
energy is strongly positive (e.g. due to electric dipole–dipole interaction, Table 2)
the variation of GAA

A brings about a wide spectrum of the shapes of transition
curves from abrupt to the two-step spin crossover (Fig. 7).

The procedure described above can be inserted into a regression program
allowing one to parameterize spin crossover transition curves in terms of �E0,
T1=2, parameters of the Lennard-Jones potential, and coefficients �AA

A and �BB
A.

Fig. 5. The origin of the deflection of molecules from positions of mechanical equilibrium
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Figure 8 shows the results of such parameterization of the two-step spin crossover
in [Fe(2-pic)3]Cl2EtOH (data from Ref. [16]). The standard energy of spin cross-
over was fixed at �E0¼ 6.14 kJ=mol according to calorimetric data [17]. The

Fig. 6. Dependencies of non-ideality parameters on the gradient of many-body potential computed

for a model system with a strong electric dipole–dipole contribution towards the excess energy

(�E0¼ 14 kJ=mol, T1=2¼ 155 K, ��¼ 3 D, see Table 2)

Table 2. Non-idality parameters of a system of neutral complexes with a large contribution from

electric dipole–dipole interactions (�E0¼ 14 kJ=mol, T1=2¼ 155 K, ��¼ 3 D) and variable contri-

bution of many-body interactions represented by the gradient GAA
A; corresponding simulated curves

are shown in Fig. 7

Fig. 7 �AA
A

GAA
A

kJ= �A

�Eex

kJ=mol

�A

kJ=mol

�B

kJ=mol

1 0.000 0.0 7.152 0.000 0.000

2 0.016 �48.6 3.084 0.501 0.442

3 0.020 �60.8 0.954 0.981 0.866

4 0.026 �79.0 �2.938 2.163 1.909

5 0.028 �85.1 �4.406 2.706 2.388

Fig. 7. Variations of the shape of transition curve caused by the variation of the gradient of many-

body potential computed for a model system with parameters given in Table 2; dashed lines represent

the degree of order
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required distances rAA and rBB were assumed to equal the smallest lattice constants
in LS and HS states of this compound according to Ref. [18]. The depth of the
Lennard-Jones potential in the HS state was fixed at "BB ¼ 14 kJ=mol, whereas "AA

was considered as an adjustable parameter along with T1=2, �AA
A, and �BB

A.
The regularization bound �AA

A ¼ ��BB
A has proven too strict for the param-

eterization of experimental transition curves, see Fig. 8A, first row in Table 3.
The more flexible bound �AA

A � ��BB
A allows one to adjust both these coeffi-

cients yielding an adequate description of the transition curve, Fig. 8B (second row
in Table 3).

As has been shown above, the effect of the Axilrod-Teller potential in model
spin crossover systems is small: it does not affect the excess energy and yields
comparatively small asymmetries of splittings in compressed=expanded systems
alone. Triple interactions of the Axilrod-Teller type thus only increase the sensi-

Fig. 8. Approximation of the data [13] on spin crossover in [Fe(2-pic)3]Cl2EtOH according to the

model of triple interactions and ordering with triple interactions represented by relative deviations of

molecular distances from those corresponding to the minima of binary potentials; parameters are

given in Table 3; the left hand graph corresponds to the bound �AA
A ¼ ��BB

A, the right hand graph

was obtained by adjusting both �AA
A and �BB

A. Dashed lines represent the degree of order

Table 3. Estimates of parameters obtained by fitting data [13] on spin crossover in [Fe(2-pic)3]Cl2EtOH according to the model

of triple interactions and ordering with triple interactions represented by relative deviations of molecular distances from those

corresponding to the minima of binary potentials (�AA
A and �BB

A); binary interactions are represented by Lennard-Jones

potential ("ij, aij)

�yx �E0

kJ=mol

T1=2

K

�AA
A �BB

A "AA

kJ=mol

aAA

�A

aBB

�A
�Eex

kJ=mol

�A

kJ=mol

�B

kJ=mol

�AA
A ¼ ��BB

A 0.107 6.14 115.4

� 0.7

0.0391

� 0.0007

�0.0391 7.926

� 0.125

11.3256 11.5710 �0.420 1.471 2.598

�AA
A � ��BB

A 0.015 6.14 115.5

� 0.1

0.0403

� 0.0001

�0.0368

� 0.0001

8.019

� 0.009

11.3256 11.5710 �0.354 1.630 2.151
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tivity of a transition curve towards compression. The asymmetries corresponding to
experimental shapes of spin crossover may arise from stronger many-body inter-
actions, for example many-center exchange interactions. Such many-center poten-
tials (of any type) can be taken into account via deviations of molecules from the
points of mechanical equilibrium set by the known binary potential. In the approx-
imation of small perturbations these deviations are proportional to the gradients of
the many-center potentials. Dependencies of excess energies and asymmetries of
splittings can be computed parametrically. Employing regularization bounds it is
possible to achieve adequate parameterization of experimental transition curves of
spin crossover in terms of parameters of Lennard-Jones potential and relative
deviations of molecules from the position of mechanical equilibrium.

Methods

The minimisation of energy and calculations of non-ideality parameters have been
achieved in Microsoft ExcelTM worksheets employing the Solver tool. Regression
of experimental data and simulation of transition curves have been performed using
a multipurpose non-linear regression program OPTIMI supplied with the mono-
graph, Ref. [19]. Details of regression procedure can be found in Refs. [6–9].
Transition curves are simulated (if not otherwise specified) for a model system
characterized by �E0¼ 14 kJ=mol and T1=2¼�E0=�S0¼ 155 K that are indepen-
dent of compression=expansion.
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